Technology  >  Surface Engineering  >  Plating

Plating describes surface-covering where a metal is deposited on a conductive surface. Plating has been done for hundreds of years, but it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish. Thin-film deposition has plated objects as small as an atom, therefore some plating is nanotechnology.

There are several plating methods, and many variations. In one method, a solid surface is covered with a metal sheet, and then heat and pressure are applied to fuse them (a version of this is Sheffield plate). Other plating techniques include vapor deposition under vacuum and sputter deposition. Recently, plating often refers to using liquids. Metallizing refers to coating metal on non-metallic objects.

In electroplating, an ionic metal is supplied with electrons to form a non-ionic coating on a substrate. A common system involves a chemical solution with the ionic form of the metal, an anode (positively charged) which may consist of the metal being plated (a soluble anode) or an insoluble anode (usually carbon, platinum, titanium, lead, or steel), and finally, a cathode (negatively charged) where electrons are supplied to produce a film of non-ionic metal.

Electroless plating, also known as chemical or auto-catalytic plating, is a non-galvanic type of plating method that involves several simultaneous reactions in an aqueous solution, which occur without the use of external electrical power. The reaction is accomplished when hydrogen is released by a reducing agent, normally sodium hypophosphite, and oxidized thus producing a negative charge on the surface of the part. The most common electroless plating method is electroless nickel plating.

Specific cases: Gold plating •   Silver plating •   Rhodium plating •   Chrome plating •   Zinc plating •   Tin plating •   Alloy plating  •   Composite plating •   Cadmium plating •   Nickel plating

Surface finishing processes can be categorized by how they affect the workpiece:

Adding or altering finishing: such as Galvanizing, Anodizing, Power Coating, Mechanical Plating and so on; removing or reshaping finishing: such as sandblasting, burnishing, shot-peening, and so on.